В отличие от организации автобусного сообщения использование троллейбусов для перевозки пассажиров имеет свои существенные отличия. Так как для движения троллейбуса необходим внешний источник тока, неотъемлемым атрибутом троллейбусной системы является специальный элемент для передачи электроэнергии — контактная сеть. Схематически схему электропитания троллейбусной системы можно представить следующим образом.
Контактная сеть представляет собой два медных провода, подвешенных по всей протяженности маршрута движения, на высоте номинального положения токоприемников троллейбуса (обычно 4 – 6 метров). Провода изолированы между собой, а также от системы тросов и растяжек крепления. Расстояние между проводами равно расстоянию между токоприемниками троллейбуса. Тяговая подстанция является источником постоянного тока напряжением 550 В. Далее напряжение на контактные провода поступает через специальные кабеля (фидера), (плюсовой и минусовой). Они проложены под землей и соединяются с контактными проводами через определенные промежутки. Такое подсоединение обусловлено необходимостью снижения падения напряжения, поскольку ток, потребляемый троллейбусом в режиме движения достаточно велик (достигает 400 ампер). К примеру, при сопротивлении 0,5 Ом от тяговой подстанции до места нахождения троллейбуса напряжение будет равно 350 В. Поэтому к проводимости подводящих проводов и надежности электрических соединений предъявляются довольно жесткие требования.
Система подвески контактной сети должна обеспечивать свободное скольжение головки токоприемника по контактному проводу при допустимом отклонении троллейбуса от оси контактных проводов в любую сторону.
Одним из способов является использование специального зажима (4). Он состоит из двух щечек – основной (3) и прижимной (1), которые стягиваются винтами (2). Грани щечек имеют специальную форму, соответствующую профилю контактного провода (5). Такая конструкция обеспечивает надежную фиксацию контактного провода в зажиме и не препятствует свободному скольжению головки токоприемника троллейбуса.
Подвеска контактной сети осуществляется различными по конструкции подвесами Они обеспечивают надежное крепление и изоляцию проводов как между собой, так и с натяжными тросами.
1) подвес неизолированный двуплечий (ПНД); 2) место закрепления контактного провода; 3) изолятор из дельта-древесины; 4) пряжечный изолятор
Контактная сеть делится на отдельные участки с помощью секционных изоляторов, имеющих воздушный промежуток. При прохождении токоприемника через этот изолятор возникает электрическая дуга, которая способна перекрыть воздушный промежуток между двумя изолированными участками и тем самым полностью разрушить изолятор. Поэтому в контактной сети троллейбуса применяется устройство для «гашения” электрической дуги — секционный изолятор.
К специальным частям контактной сети относятся кривые держатели, стрелки, крестовины и пересечения троллейбусных линий как друг с другом, так и с линиями трамвая. Чтобы не создавать в местах поворота контактной сети сложной системы подвеса, которая ухудшит условия токосъема, и для создания на контактных проводах плавной кривой поворота устанавливают кривые держатели .Они помогают головке токоприемника пройти участок кривой и могут изменять направление контактного провода до 45°.
Кривой держатель типа КД-5.
Для перевода токоприемника на одну линию контактной сети в местах слияния двух трасс устанавливают сходные стрелки . Они просты по конструкции. Контактные провода сходящихся трасс оканчиваются на плите стрелки направляющими. При входе с любой трассы на стрелку головка токоприемника скользит обоймой вдоль специальных направляющих, установленных на плите стрелки, которые выводят головку токоприемника на новое направление трассы, уходящей со сходной стрелки.
Сходная стрелка
Конструктивные элементы сходных стрелок выполнены с постепенно меняющейся высотой, благодаря чему головка токоприемника плавно переходит со скольжения угольной вставкой по контактному проводу на скольжение обоймами головки по направляющим плиты стрелки.
При необходимости перевода токоприемника с одной линии на ветвь разветвляемой трассы устанавливают расходные (управляемые) стрелки. Конструкция расходных стрелок значительно сложнее сходных. Механизм привода этих стрелок должен направлять движение головки токоприемника в одно из двухнаправлений. В троллейбусных системах стран бывшего СССР применяется управление по току с движением налево под нагрузкой.
Перевод направления движения головки токоприемника осуществляется пером (4), которое может занимать одно из двух фиксированных положений. Подвижное перо (4) стрелки постоянно удерживается пружиной (не указана) в положении для движения троллейбуса направо. Механизм включения перевода стрелки состоит из электромагнита (3), связанного рычагом с подвижным пером (4). При нахождении головки токоприемника (2) на участке контактного провода (1), ток , потребляемый троллейбусом, проходит через катушку электромагнита (3). Если его величина превышает 10– 15 А (ток, идущий на вспомогательные цепи троллейбуса), т.е троллейбус движется с включенным силовым приводом, электромагнит срабатывает и переводит перо в положение, разрешающее движение башмака токоприемника в левом направлении. После проезда стрелки ток через катушку электромагнита прекращается и под действием возвратной пружины перо возвращается в исходное положение. Для увеличения надежности срабатывания механизма перевода стрелки в троллейбусе могут быть предусмотрены переключатели режима проезда. Выключатель проезда стрелки вправо для уменьшения потребления тока отключает отопители и двигатель компрессора. Выключатель проезда влево для увеличения тока подключает в силовом электроприводе дополнительную нагрузку, не влияющую на скорость троллейбуса.
В заключение можно отметить, что идея использования отдельных участков контактной сети, подключенных через токовое реле, может быть применена для автоматизации некоторых процессов. К примеру, в троллейбусном депо г.Гродно установлены и успешно эксплуатируются системы автоматического открытия и закрытия ворот депо, управляемые троллейбусом.
Как вам статья?